Department of Mechanical Engineering

PVP 19

FLUID MECHANICS

Course Code	19ME3403	Year	II	Semester	II	
Course Category	Program Core	Branch	ch ME Course Type		Theory	
Credits	4	L-T-P	3-1-0	Prerequisites	Engineering Mechanics	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
After successful completion of the course, the student will be able to						
CO1	Describe the concepts of fluid properties, pressure measurement	L1				
COI	by manometers.					
CO2	2 Estimate the forces acting on submerged body in a static fluid.					
CO3	Apply conservation laws to solve fluid flow problems in engineering					
COS	applications.					
CO4	Analyze the various flow measuring devices and estimate the force exerted by					
CO4	the jet on vanes.					
CO5	Apply Rayleigh's method, and Buckingham Pi theorem to arrange given variables into dimensionless groups.					
COS	variables into dimensionless groups.					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3											3	2
CO2	2	3											3	2
CO3	2	3											3	2
CO4	2	3											3	2
CO5	2	3											3	2

Syllabus					
Unit No.	Contents	Mapped COs			
	PROPERTIES OF FLUIDS				
	Properties of fluids- Density, specific weight, specific volume, specific				
	gravity, Viscosity-Dynamic viscosity, Kinematic Viscosity-Cohesion,				
	Adhesion, surface tension, capillarity and vapor pressure, compressibility				
I	and elasticity.	CO1			
	MEASUREMENT OF PRESSURE:				
	Pascal's law, Manometers-Simple Manometers-Piezometer, U- tube				
	manometer, Single column manometers, Differential manometers-U- Tube				
	differential manometers and inverted U-Tube differential manometers.				
	HYDROSTATIC FORCES ON SURFACES:				
II	Total pressure and center of pressure on horizontal plane surface,				
	Vertical plane surface, inclined plane surface, Practical applications of	CO2			
	total pressure and center of pressure-Dams, Gates and Tanks.				

	BUOYANCY AND FLOATING:						
	Buoyancy-Archimedes principle- center of buoyancy-metacenter and						
	metacentric height-stability of submerged and floating bodies-						
	determination of metacentric height.						
	FLUID KINEMATICS:						
	Classification of flows-steady and unsteady, uniform and non- uniform,						
	laminar and turbulent, rotational and irrational, viscous and inviscid,						
	continuity equation, Description of fluid flow, Stream line, path line,						
	streak lines and stream tube						
	FLUID DYNAMICS:						
	Euler's and Bernoulli's equations for flow along a stream line, momentum						
	equation and its application on force on pipe bend.						
III	CLOSED CONDUIT FLOW:						
	Reynolds's experiment- Darcy Weisbach equation- Minor losses in pipes-	CO3					
	pipes in series and pipes in parallel- total energy line- hydraulic gradient						
	line.						
	MEASUREMENT OF FLOW:						
	Pitot tube, Venturi meter and orifice meter -flow over rectangular,						
	triangular, trapezoidal and stepped notches.						
IV.	IMPACT OF JETS:						
1 1 4	Hydrodynamic force of jets on stationary and moving flat, inclined and	CO4					
	curved vanes, jet striking centrally and at tip – velocity	20.					
	triangles at inlet and outlet – expressions for work done and efficiency -						
	angular momentum principle						
	DIMENSIONAL ANALYSIS:						
	Fundamental and derived dimensions, Rayleigh method, Buckingham						
V	theorem, dimensionless groups, application of dimensional groups, model						
	testing and similitude, types of similarity - geometric, kinematic and	CO5					
	dynamic, model testing methods.						

Learning Recourse(s)

Text Book(s)

- 1. Hydraulics and Fluid Mechanics including hydraulic machines, by P.N.Modi and S.M.Seth, Standarard book house, 2000, New Delhi.
- 2. K.L. Kumar / Engineering Fluid Mechanics / S chand Publications.

Reference Book(s)

- 1. Fluid Mechanics and Hydraulic Machines, by R.K.Bansal,Laxmi publications (P) Ltd. 2011, New Delhi.
- 2. Hydraulics and Fluid Mechanics and fluid machines, by S Ramamrutham, Dhanapat rai publishing company, New Delhi
- 3. Fluid Mechanics and Hydraulic Machines, by R.K.Rajput, S.Chand limited publications, 2008, New Delhi.
- 4. Fluid Mechanics and Hydraulic Machines, by Sukumar Pati, Mc Graw Hill Education Private Limited, 2014, New Delhi.
- 5. Fluid Flow Machines by N.S.Govinda Rao, Tata Mc Graw Hill publishing company Ltd.
- 6. Fluid Mechanics and Hydraulic Machines by K.R. Arora, Standard Publishers Distributors

Department of Mechanical Engineering

PVP 19

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/112/105/112105171/
- 2. https://nptel.ac.in/courses/112/105/112105183/
- 3. https://nptel.ac.in/courses/105/101/105101082/
- 4. https://nptel.ac.in/courses/105/103/105103095/